5 research outputs found

    Massive M2M Access with Reliability Guarantees in LTE Systems

    Full text link
    Machine-to-Machine (M2M) communications are one of the major drivers of the cellular network evolution towards 5G systems. One of the key challenges is on how to provide reliability guarantees to each accessing device in a situation in which there is a massive number of almost-simultaneous arrivals from a large set of M2M devices. The existing solutions take a reactive approach in dealing with massive arrivals, such as non-selective barring when a massive arrival event occurs, which implies that the devices cannot get individual reliability guarantees. In this paper we propose a proactive approach, based on a standard operation of the cellular access. The access procedure is divided into two phases, an estimation phase and a serving phase. In the estimation phase the number of arrivals is estimated and this information is used to tune the amount of resources allocated in the serving phase. Our results show that the proactive approach is instrumental in delivering high access reliability to the M2M devices.Comment: Accepted for presentation in ICC 201

    Random Access for Machine-Type Communication based on Bloom Filtering

    Get PDF
    We present a random access method inspired on Bloom filters that is suited for Machine-Type Communications (MTC). Each accessing device sends a \emph{signature} during the contention process. A signature is constructed using the Bloom filtering method and contains information on the device identity and the connection establishment cause. We instantiate the proposed method over the current LTE-A access protocol. However, the method is applicable to a more general class of random access protocols that use preambles or other reservation sequences, as expected to be the case in 5G systems. We show that our method utilizes the system resources more efficiently and achieves significantly lower connection establishment latency in case of synchronous arrivals, compared to the variant of the LTE-A access protocol that is optimized for MTC traffic. A dividend of the proposed method is that it allows the base station (BS) to acquire the device identity and the connection establishment cause already in the initial phase of the connection establishment, thereby enabling their differentiated treatment by the BS.Comment: Accepted for presentation on IEEE Globecom 201

    Power Measurement Framework for LPWAN IoT

    No full text
    corecore